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1.  Learning Outcomes 

After studying this module, you shall be able to  

 Understand the difference between an ideal classical gas and an ideal Bose gas arising 

because of indistinguishability of particles leading to quantum effects not observed 

classically. 

 See that there are two kinds of Bose Gas, with zero mass and zero chemical potential and 

the other with non-zero mass with chemical potential less than zero.    

 Understand the relevance of mean thermal wavelength or thermal de Broglie wavelength  

as a deciding parameter to characterize when are the quantum effects significant. 

 Understand how the behavior of a Bose gas is different from  a classical ideal gas 

 Understand when is Bose gas said to be degenerate 

 Calculate  thermodynamic properties viz equation of state, number density, internal 

energy, specific heat, Helmholtz free energy and entropy  of a Bose gas   at 𝑻 ≠ 𝟎  

involving bose integrals. 

 Learn that the non-degenerate Bose  gas, for which  
𝑵𝝀𝟑

𝑽𝓖
 ≪ 𝟏, behaves like a classical 

ideal gas. 

 Understand through   virial expansion of pressure that an ideal bose despite the absence 

of any interaction gas shows an inherent attractive behavior because of symmetric nature 

of the multi particle wave function involved   

 That as 𝑻 → ∞, pressure and specific heat approach classical values 

 That 𝑪𝑽 versus T curve has a maximum at 𝑻 = 𝑻𝑪, where derivative of 𝑪𝑽 is 

discontinuous. 

  Learn how with decreasing temperature chemical potential starts increasing and vanishes 

at a temperature 𝑻𝑪, called Bose-Einstein temperature, which gives rise to Bose-Einstein 

Condensation. This phase transition is like superfluid transition in liquid helium and 

condensation of cooper pairs in the BCS theory of superconductivity. 

 Underline the fact that Bose- Einstein condensation takes place in a non-interacting gas 

which happens in momentum space and not in co-ordinate space 

 Learn in detail the existence of Bose Einstein condensate in a diluted gas of magnetically 

confined group of alkaline atoms cooled by evaporation below temperatures of the order 

of 200 nano kelvin 

2. Introduction 

In the module on Ideal Bose gas, we focus our attention on the study of  an ideal quantum 

gas made up of indistinguishable particles with integer spin, the so called Bosons,  

following Bose-Einstein distribution.  

 
𝒇(𝝐) =

𝟏

(𝒆
𝝐−𝝁

𝒌𝑩𝑻 − 𝟏)
 

(1) 

We encounter in nature two kinds of Bose gas, ones with chemical potential 𝝁 = 𝟎 and 

the other with 𝝁 ≠ 𝟎, but always negative. Examples of the  first kind of the Bose gas are 

Black Body radiation made up of photons, quantized lattice vibrations in a solid called 
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phonons and quantized spin lattice vibrations called magnons. Taking 𝝁 = 𝟎 also implies 

that constraint applied for the derivation of Bose-Einstein distribution for conservation of 

particles constituting the system is no longer applicable and these particles can be  

created by the energy of the heat bath and destroyed by absorption in the heat bath 

keeping entropy of the heat bath constant. Particles of gas with 𝝁 = 𝟎 are made up 

particles with mass 𝒎 = 𝟎 and are referred to as quasi particles. Such Bose particles have 

momentum 𝒑⃗⃗ = ℏ𝒌⃗⃗  and 𝑬 = ℏ𝝎(𝒌⃗⃗ ). In the second kind of Bose particles the number of 

particles constituting the system are conserved and have mass, examples of such system 

are 𝑯𝒆𝟒 and vapours of alkali metals whose atoms constituting the vapours have been  

cooled down to temperature of the order of micro-kelvin. At 𝝐 = 𝝁 Bose-Einstein 

distribution diverges unless 𝝁  is negative. In an ideal Bose gas it is assumed that inter-

particle interaction is negligible and quantum effects determine the thermodynamic 

properties  of the system. Second kind of Bose gas also shows a phase transition called 

Bose-Einstein Condensation.   

3.  Degenerate Bose Gas 

The name degenerate has a special significance here, a system of bosons say photons is 

said to be degenerate if the average de Broglie wavelength  is comparable to or much 

larger than the average particle distance such that their wave functions overlap and that 

this overlap cannot be ignored and the system can no longer be treated as classical and 

must be treated quantum mechanically. It is expected that systems at low 𝑻 that is at high 

value of 𝜷 will be degenerate. The parameter  𝒏𝝀𝟑, where 𝒏 is  mean number density and  

𝝀 =
𝒉

(𝟐 𝝅𝒎 𝒌𝑩𝑻)
𝟏
𝟐 

  thermal  de Broglie wave length becomes a very important criteria as to 

when will quantum effects manifest. For 𝒏𝝀𝟑 ≪ 𝟏, system behaves like a classical gas. 

However, as 𝒏𝝀𝟑 → 𝟏 there is a significant departure from classical behavior and system 

obeys Bose Einstein statistics. Even when gas is ideal the inherent interaction manifests 

itself in the form of system having symmetric wave function.  

4.  Thermodynamic Properties of  Bose Gas  

(a) Equation of State   

We had earlier derived the equation of state of an ideal Bose gas 

  𝑷𝑽

𝒌𝑩𝑻
= −∑𝒍𝒏{

𝒌

𝟏 − 𝒆(−𝜷(𝝐𝒌−𝝁)) (2) 

Where  𝜷 =
𝟏

𝒌𝑩𝑻
, 𝝁 is chemical potential and 𝝐𝒌 =

ℏ𝟐𝒌𝟐

𝟐𝒎
. Replacing  𝒆𝜷𝝁 by 𝒛 and  

replacing summation over integration equation of state can be obtained as  

 𝑷𝑽

𝒌𝑩𝑻
=  − 

𝑽

(𝟐𝝅)𝟑
 ∫ 𝐥𝐧(𝟏 − 𝒁𝒆−𝜷𝝐) 𝒅𝟑𝒌

∞

𝟎

 (3) 



  
____________________________________________________________________________________________________ 

Physics 
 

PAPER No. 10 : Statistical Mechanics 

MODULE No. 1: Statistical Mechanics: An Introduction 

 

However, here if 𝝐 and 𝝁 simultaneously become zero the integrand will diverge at the 

lower limit, to overcome this difficulty the right procedure shall be to separate out 𝝐 =
𝟎 term and express (3) as 

 

 

 𝑷𝑽

𝒌𝑩𝑻
= −𝒍𝒏(𝟏 − 𝒛) − 

𝑽

(𝟐𝝅)𝟑
 ∫ 𝐥𝐧(𝟏 − 𝒁𝒆−𝜷𝝐) 𝒅𝟑𝒌  (4)  

  

Or 𝑷𝑽

𝒌𝑩𝑻
= −𝒍𝒏(𝟏 − 𝒛) − 

𝑽𝟒𝝅     

(𝟐𝝅)𝟑
∫ 𝐥𝐧(𝟏 − 𝒁𝒆−𝜷𝝐)

∞

𝟎
 𝒌𝟐 𝒅𝒌   (5) 

Noting that 𝝐 =
ℏ𝟐𝒌𝟐

𝟐𝒎
, 𝒌𝟐𝒅𝒌 =

𝟏

𝟐
(
𝟐𝒎

ℏ𝟐 )

𝟑

𝟐
𝝐

𝟏

𝟐𝒅𝝐 

Or 𝑷𝑽

𝒌𝑩𝑻
= −𝒍𝒏(𝟏 − 𝒛) − 

𝑽𝟒𝝅     

𝟐(𝟐𝝅)𝟑
∫ 𝐥𝐧(𝟏 − 𝒁𝒆−𝜷𝝐)

∞

𝟎
 (

𝟐𝒎

ℏ𝟐 )

𝟑

𝟐
𝝐

𝟏

𝟐𝒅𝝐   
(6) 

Put 𝜷𝝐 = 𝒙, equation (19) can be written as  

Or 𝑷

𝒌𝑩𝑻
= −

𝒍𝒏(𝟏−𝒛)

𝑽
− (

𝟐 𝝅𝒎𝒌𝑩𝑻

 𝒉𝟐 )

𝟑

𝟐
(
 𝟒  

𝝅  
)

𝟏

𝟐
∫ 𝐥𝐧(𝟏 − 𝒁𝒆−𝒙)

∞

𝟎
  𝒙

𝟏

𝟐𝒅𝒙   
(7) 

Or 𝑷

𝒌𝑩𝑻
= −

𝒍𝒏(𝟏−𝒛)

𝑽
−

𝟏

𝝀𝟑 (
 𝟒  

𝝅  
)

𝟏

𝟐
∫ 𝐥𝐧(𝟏 − 𝒁𝒆−𝒙)

∞

𝟎
  𝒙

𝟏

𝟐𝒅𝒙   
(8) 

Where 
𝟏

𝝀𝟑 = (
𝟐 𝝅𝒎𝒌𝑩𝑻

 𝒉𝟐 )

𝟑

𝟐
, and 𝝀 =

𝒉

(𝟐𝝅𝒎𝒌𝑩𝑻)
𝟏
𝟐 

 is thermal de Broglie wavelength.  

Let us see how  𝑰 = ∫ 𝐥𝐧(𝟏 − 𝒁𝒆−𝒙)
∞

𝟎
  𝒙

𝟏

𝟐𝒅𝒙  can be evaluated, it can be integrated by 

parts 

 

𝑰 = 𝐥𝐧(𝟏 − 𝒁𝒆−𝒙)𝒙𝟑/𝟐|
∞ 

𝟎
−

𝟐

𝟑
∫

𝒁𝒆−𝒙

(𝟏 − 𝒁𝒆−𝒙)
𝒙

𝟑

𝟐𝒅𝒙

∞

𝟎

 

(9) 

Here the first term vanishes, since first term of the product vanishes at upper limit and 

second term of the limit vanishes at lower limit. 

Therefore, equation (22) reduces to  
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Or 

𝑰 =  −
𝟐

𝟑
∫

𝟏

(𝒁−𝟏𝒆𝒙 − 𝟏)
𝒙

𝟑

𝟐𝒅𝒙

∞

𝟎

 

(10) 

 

or 

𝑷

𝒌𝑩𝑻
=  −

𝒍𝒏(𝟏 − 𝒛)

𝑽
+

𝟏

𝝀𝟑
(
 𝟏 

𝝅  
)

𝟏

𝟐 𝟒

𝟑
∫

𝒙
𝟑

𝟐

(𝒁−𝟏𝒆𝒙 − 𝟏)
𝒅𝒙

∞

𝟎

= −
𝒍𝒏(𝟏 − 𝒛)

𝑽
+

𝟏

𝝀𝟑
 𝒈𝟓

𝟐

(𝒛) 

(11) 

Where 𝒈𝟓

𝟐

(𝒛) =
𝟏

𝚪(
𝟓

𝟐
)
 ∫

𝒙
𝟑
𝟐

(𝒁−𝟏𝒆𝒙−𝟏)
𝒅𝒙

∞

𝟎
 , which is a generic integral of the type  

 

𝒈𝝂(𝒛) =
𝟏

𝚪(𝝂)
 ∫

𝒙 𝝂−𝟏

(𝒁−𝟏𝒆𝒙 − 𝟏)
𝒅𝒙

∞

𝟎

   
(12) 

These integrals are known as Bose integrals (See Appendix-A2). And for small 𝒛, this 

integral can be expanded as a convergent series such that 

 
𝒈𝝂(𝒛) = 𝒛 +

𝒛𝟐

𝟐𝝂
+

𝒛𝟑

𝟑𝝂
− ⋯    

(13) 

For 𝒁 ≪ 𝟏,  𝒈𝝂(𝒛) = 𝒁. As 𝒁 increases 𝒈𝝂(𝒛) also increases monotonically and over the 

physical range of interest (𝟎 < 𝒁 ≤ 𝟏) has the maximum value as 𝒁 → 𝟏. For 𝝂 > 𝟏 then 

it becomes equal to Riemann zeta function 𝜻(𝝂). 

 (b) Number density 

Recall  

 
𝑵 = ∑ < 𝒏𝝐 >

𝝐

= ∑
𝟏

𝒁−𝟏𝒆𝜷𝝐 − 𝟏
𝝐

 
(14) 

Summation can be converted into an integral  and replacing 𝜷𝝐 = 𝒙 as 

 

𝑵 = 
𝑽

𝝀𝟑
(
 𝟒  

𝝅  
)

𝟏

𝟐

∫  
𝟏

𝒁−𝟏𝒆𝒙 − 𝟏

∞

𝟎

  𝒙
𝟏

𝟐𝒅𝒙 

(15) 

However, here if 𝝐 and 𝝁 simultaneously become zero the integrand will diverge at the 

lower limit, to overcome this difficulty the right procedure shall be to separate out 𝝐 =
𝟎 term and express (15) as 
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 𝑵

𝑽
=

𝟏

𝑽
(

𝒁

𝟏 − 𝒁
) +

𝟏

𝝀𝟑
(
 𝟒  

𝝅  
)

𝟏

𝟐

∫  
𝟏

𝒁−𝟏𝒆𝒙 − 𝟏

∞

𝟎

  𝒙
𝟏

𝟐𝒅𝒙 

(16) 

 

Here first term represents number of particles in the 𝜖 = 0 state or 𝑝 = 0 state and can be 

written as 𝑁0. Therefore, (16) can be written as 

 

Or 𝑵 − 𝑵𝟎

𝑽
=

𝟏

𝝀𝟑
(
 𝟒  

𝝅  
)

𝟏

𝟐

∫  
𝟏

𝒁−𝟏𝒆𝒙 − 𝟏

∞

𝟎

  𝒙
𝟏

𝟐𝒅𝒙 =
𝟏

𝝀𝟑
𝒈𝟑

𝟐

(𝒁) 

(17) 

Let us have a relook at equations (11) and (16) 

For 𝒁 ≪ 𝟏, a situation close to classical limit the term   
𝒍𝒏(𝟏−𝒛)

𝑽
 in equation (11)  and 

𝒁

(𝟏−𝒁)𝑽
  in equation (16) are of the order 

𝟏

𝑽
 and hence negligible. But when 𝒁 increases and 

approaches 1, 
𝒁

(𝟏−𝒁)𝑽
=

𝑵𝟎

𝑽
  the number density of particles in zero momentum state is no 

longer negligible and can be an appreciable fraction of total number of particles 
𝑵

𝑽
. Such a 

situation in which an appreciable fraction of particles accumulate in zero momentum state 

leads to what is known as Bose Einstein Condensation. However, it must be noted that 

this is not a condensation in the sense of condensation of a gas of a liquid in real space. It 

is a condensation in the momentum space.  

Nevertheless, in equation (11) 
𝒍𝒏(𝟏−𝒛)

𝑽
 remains negligible as 𝒁 approaches 1 and this term 

can be altogether neglected. 

 (c) Internal Energy 

The internal energy of the system is given by  

Or 
𝑼 = −

𝝏

𝝏𝜷
(
𝑷𝑽

𝒌𝑩𝑻
)
𝒁,𝑽

= 𝒌𝑩𝑻𝟐 [
𝝏

𝝏𝑻
(
𝑷𝑽

𝒌𝑩𝑻
)]

𝒛,𝑽

  
(18) 

 

Or 
𝑼 = 𝒌𝑩𝑻𝟐 [

𝝏

𝝏𝑻
( 

𝑽

𝝀𝟑
 𝒈𝟓

𝟐

(𝒛))]
𝒛,𝑽

= 𝑽𝒌𝑩𝑻𝟐𝒈𝟓

𝟐

(𝒛) [
𝝏

𝝏𝑻
( 

𝟏

𝝀𝟑
 )]

=  𝑽𝒌𝑩𝑻𝟐𝒈𝟓

𝟐

(𝒛) [
𝝏

𝝏𝑻
( (

𝟐 𝝅𝒎𝒌𝑩𝑻

 𝒉𝟐
)

𝟑

𝟐

 )]

=
𝟑

𝟐
 𝑽𝒌𝑩 (

𝟐 𝝅𝒎𝒌𝑩𝑻

 𝒉𝟐
)

𝟑

𝟐

 𝑻𝒈𝟓

𝟐

(𝒛) =

=
𝟑

𝟐
 𝑽𝒌𝑩

𝟏

𝝀𝟑
 𝑻𝒈𝟓

𝟐

(𝒛)   

(19) 
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Once again it is found that ideal Bose Gas satisfies the same relationship between 

pressure and energy density as is satisfied in the case of ideal fermi gas and classical ideal 

gas i.e.  

Or 
𝑼 =  

𝟑

𝟐
 𝑽𝒌𝑩

𝟏

𝝀𝟑
 𝑻𝒈𝟓

𝟐

(𝒛) =  
𝟑

𝟐
𝑽𝑷   

(20) 

 

Or 
𝑷 =

𝟐

𝟑

𝑼

𝑽
  

(21) 

(e) Equation of State in Virial Expansion 

For small values of 𝒁 in equation (11) and (16), first term on the right hand side of each 

of the equations can be neglected and by noting that 

 𝑵

𝑽
=  

𝟏

𝝀𝟑
𝒈𝟑

𝟐

(𝒁) =
𝟏

𝝀𝟑
(𝒛 +

𝒛𝟐

𝟐
𝟑

𝟐

+
𝒛𝟑

𝟑
𝟑

𝟐

− ⋯  ) =  
𝟏

𝝀𝟑
 ∑

𝒛𝒍

𝒍
𝟑

𝟐

∞

𝒍=𝟏

 
(22) 

 

And  

 𝑷

𝒌𝑩𝑻
=   

𝟏

𝝀𝟑
 𝒈𝟓

𝟐

(𝒛) =
𝟏

𝝀𝟑
(𝒛 +

𝒛𝟐

𝟐
𝟓

𝟐

+
𝒛𝟑

𝟑
𝟓

𝟐

− ⋯  ) =
𝟏

𝝀𝟑
 ∑

𝒛𝒍

𝒍
𝟓

𝟐

∞

𝒍=𝟏

 
(23) 

 

By the process of reverting the series, equation of state in virial expansion can be written. 

The steps involved are (i) writing z as power series in 
𝑵

𝑽
, (ii) substituting it in equation 

(22) and by equating like powers of 
𝑵

𝑽
 on both sides one can obtain coefficients of the 

power series written in step (i). The value of 𝒛 thus obtained in (23) one can obtain 

equation of state in the viral expansion form. 

Step (i) 

𝒛 = 𝒂𝟎 + 𝒂𝟏𝒏 + 𝒂𝟐𝒏
𝟐 + ⋯ ,𝐰𝐡𝐞𝐫𝐞 𝒏 =

𝑵

𝑽
 

Step (ii) 

𝒏 =
𝟏

𝝀𝟑
( (𝒂𝟎 + 𝒂𝟏𝒏 + 𝒂𝟐𝒏

𝟐 + ⋯) +
(𝒂𝟎 + 𝒂𝟏𝒏 + 𝒂𝟐𝒏

𝟐 + ⋯)𝟐

𝟐
𝟑

𝟐

+
(𝒂𝟎 + 𝒂𝟏𝒏 + 𝒂𝟐𝒏

𝟐 + ⋯)𝟑

𝟑
𝟑

𝟐

− ⋯  ) 

 

On comparing the coefficients on both the sides we get  

𝒂𝟎 = 𝟎 
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(𝒂𝟏 +
𝟐𝒂𝟎𝒂𝟏

𝟐
𝟑

𝟐

)
𝟏

𝝀𝟑
 = 𝟏, ∴ 𝒂𝟏 = 𝝀𝟑 

(𝒂𝟐 +
𝒂𝟏

𝟐

𝟐
𝟑

𝟐

)
𝟏

𝝀𝟑
= 𝟎  

∴ 𝒂𝟐 = −
𝒂𝟏

𝟐

𝟐
𝟑

𝟐

= −
𝝀𝟔

𝟐
𝟑

𝟐

 

 

𝒂𝟑 +
𝟐𝒂𝟏𝒂𝟐

𝟐
𝟑

𝟐

+
𝒂𝟏

𝟑

𝟑
𝟑

𝟐

= 𝟎 

∴ 𝒂𝟑 =
𝝀𝟗

𝟐𝟐
−

𝝀𝟗

𝟑
𝟑

𝟐

= 𝝀𝟗 [
𝟏

𝟒
−

𝟏

𝟑
𝟑

𝟐

] 

…  

Thus  

 

𝒁 = 𝝀𝟑𝒏 −
𝝀𝟔

𝟐
𝟑

𝟐

𝒏𝟐 + 𝝀𝟗 [
𝟏

𝟒
−

𝟏

𝟑
𝟑

𝟐

] 𝒏𝟑 …,  

 

(24) 

 

Substituting 𝒁 in equation (23) 

Gives  

 𝑷

𝒌𝑩𝑻
=

𝟏

𝝀𝟑
(𝒛 +

𝒛𝟐

𝟐
𝟓

𝟐

+
𝒛𝟑

𝟑
𝟓

𝟐

− ⋯  )

=
𝟏

𝝀𝟑
(𝒏𝝀𝟑 − 

𝝀𝟔

𝟐
𝟓

𝟐

 𝒏𝟐 + 𝝀𝟗 [
𝟏

𝟒
−

𝟏

𝟑
𝟑

𝟐

−
𝟏

𝟖
+

𝟏

𝟑
𝟓

𝟐

] 𝒏𝟑 + ⋯) 

(25) 

 

 𝑷

𝒌𝑩𝑻
=  𝒏(𝟏 − 

𝝀𝟑

𝟐
𝟓

𝟐

 𝒏 + 𝝀𝟔 [
𝟏

𝟖
−

𝟐

𝟑
𝟓

𝟐

  ] 𝒏𝟐 + ⋯) 
(26) 

 

 𝑷𝑽

𝑵𝒌𝑩𝑻
=  (𝟏 − 

𝝀𝟑

𝟐
𝟓

𝟐

 𝒏 + 𝝀𝟔 [
𝟏

𝟖
−

𝟐

𝟑
𝟓

𝟐

  ] 𝒏𝟐 + ⋯)

= (𝒂𝟎 + 𝒂𝟏𝒏𝝀𝟑 + 𝒂𝟐𝒏
𝟐𝝀𝟔 + ⋯) = ∑𝒂𝒍(𝒏𝝀𝟑)𝒍

∞

𝒍=𝟎

 

(27) 
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Equation (26) is the virial expansion of the pressure which is generally written in the 

form  

 𝑷

𝒌𝑩𝑻
=  𝒏 + 𝑩𝟐(𝑻) 𝒏𝟐 + 𝑩𝟑(𝑻) 𝒏𝟑 + ⋯) 

(28) 

𝑩𝒋(𝑻) are called virial  coefficients and these reflect departure from ideal behavior 

because of some kind of interaction, which is not intermolecular in the present case but 

arises because of the symmetric nature of  the multi-particle wave function of the Bose 

particles. Note that the second virial coefficient in this case is negative implying that 

there is an attractive interaction between the Bose particles. This is not so in the case of 

fermions. As 𝑻 → ∞, 𝝀 → 𝟎 and hence pressure of the Bose gas approaches classical 

result 𝑷𝑽 = 𝑵𝒌𝑩𝑻. 

(d) Specific heat  

Let us now calculate specific heat using formula for internal energy using (21)  

 

𝑪𝑽 =
𝝏𝑼

𝝏𝑻
=

𝝏(
𝟑

𝟐
𝑷𝑽)

𝝏𝑻
=

𝟑

𝟐
𝑵𝒌𝑩

𝝏 (
𝑷𝑽

𝑵𝒌𝑩
)

𝝏𝑻
=

𝟑

𝟐
𝑵𝒌𝑩

𝝏 (
𝑷𝑽

𝑵𝒌𝑩
)

𝝏𝑻
 

(29) 

 

or 
𝑪𝑽

𝑵𝒌𝑩
 =  

𝟑

𝟐

𝝏 (
𝑷𝑽

𝑵𝒌𝑩
)

𝝏𝑻
=

𝟑

𝟐

𝝏( ∑ 𝒂𝒍(𝒏𝝀𝟑)𝒍𝑻∞
𝒍=𝟎 )

𝝏𝑻
=

𝟑

𝟐
∑(𝟏 −

𝟑𝒍

𝟐
)𝒂𝒍(𝒏𝝀𝟑)𝒍

∞

𝒍=𝟎

 

(30) 

 

or 𝑪𝑽

𝑵𝒌𝑩
 =  

𝟑

𝟐
(𝒂𝟎 + (−

𝟏

𝟐
)𝒂𝟏 𝒏𝝀𝟑 + (−𝟐)𝒂𝟐(𝒏𝝀𝟑)𝟐 + ⋯ 

(31) 

 

or 𝑪𝑽

𝑵𝒌𝑩
 =  

𝟑

𝟐
(𝟏 + (−

𝟏

𝟐
) (−

𝟏

𝟐
𝟓

𝟐

) 𝒏𝝀𝟑 + (−𝟐) [
𝟏

𝟖
−

𝟐

𝟑
𝟓

𝟐

  ] (𝒏𝝀𝟑)𝟐 + ⋯ 
(32) 

 

or 𝑪𝑽

𝑵𝒌𝑩
 =  

𝟑

𝟐
(𝟏 + 𝟎. 𝟎𝟖𝟖𝟒 𝒏𝝀𝟑 + 𝟎. 𝟎𝟎𝟔𝟔(𝒏𝝀𝟑)𝟐 + ⋯) 

(33) 

One can note that as 𝑻 → ∞, 𝝀 → 𝟎 and hence specific heat of the Bose gas approaches 

the classical value 𝑪𝑽 =
𝟑

𝟐
𝑵𝒌𝑩. At finite temperature specific heat of the gas is greater 

than the classical value, this implies that 𝑪𝑽 versus T graph has negative slope. However 

since 𝑪𝑽 must go to 0 as 𝑻 → 𝟎, thus (𝑪𝑽, 𝑻) graph must have a maxima. This happens at 

a critical temperature 𝑻𝑪, where derivative of specific heat is discontinuous.  

5.  Bose Einstein Condensation  
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Equations (23) and (33) work well when 𝒏𝝀𝟑 is such that temperature is high and  𝝀, the 

thermal de Broglie wavelength which varies as 𝑻−
𝟑

𝟐 remains small. However as 

temperature falls  we have to go back to equations (11), (17) and (20). 

Equation (17) can then be rewritten as 

 
𝑵𝒆

𝑽
=

𝑵 − 𝑵𝟎

𝑽
=  

𝟏

𝝀𝟑
𝒈𝟑

𝟐

(𝒁) =
(𝟐 𝝅𝒎 𝒌𝑩𝑻)

𝟑

𝟐

 𝒉𝟑
 𝒈𝟑

𝟐

(𝒁) 

(34) 

Where 𝑵𝒆 is the number of particles in the excited state (𝝐 ≠ 𝟎) and 𝑵𝟎 is the number of 

particles in the ground state (𝝐 = 𝟎). For the range of physical interest i.e. 𝟎 < 𝒁 ≤ 𝟏, 

upper bound occurs when 𝒁 = 𝟏, at which 𝒈𝟑

𝟐

(𝟏) = 𝟏 +
𝟏

𝟐
+

𝟏

𝟑
+ ⋯ ≡ 𝜻(

𝟑

𝟐
) ≅ 𝟐. 𝟔𝟏𝟐. 

Therefore, 𝑵𝒆, the total number of particles in all the excited states together has  also an 

bound such that for a given 𝑽 and 𝑻 

 

𝑵𝒆  ≤ 𝑽
(𝟐 𝝅𝒎 𝒌𝑩𝑻)

𝟑

𝟐

 𝒉𝟑
 𝜻 (

𝟑

𝟐
)  

(35) 

There are two possibilities now: 

(i) If actual number of particles in the system is less than this upper bound then 

all the particles get distributed in the excited states and exact value of  𝒁 i.e. 

fugacity or chemical potential gets determined by taking  𝑵𝒆 ≅ 𝑵.  

(ii) If actual number of particles is greater than this limiting value, so the number 

of particles in excess of this value cannot be distributed in the excited states 

and must get accommodated in the ground state which has no upper bound 

and can accommodate an unlimited  number of particles, such that 

 

𝑵𝟎 = 𝑵 − 𝑽
(𝟐 𝝅𝒎 𝒌𝑩𝑻)

𝟑

𝟐

 𝒉𝟑
 𝜻 (

𝟑

𝟐
)  

(36) 

 And the value of 𝒁 can then be obtained using the formula 
𝒁

(𝟏−𝒁)𝑽
=

𝑵𝟎

𝑽
 i.e. 

 

𝒁 =
𝑵𝟎

𝑵𝟎 + 𝟏
≅ 𝟏 −

𝟏

𝑵𝟎
 

(37) 

Which is 1, implying for a given 𝑻, 𝝁 = 𝟎. 

This interesting result opens up a possibility of accommodating a large number of 

particles in the ground state and is called Bose-Einstein Condensation. And for a given 
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number of particles 𝑵 > 𝑵𝒆, the system can be seen as a mixture of two phases. One 

phase made up of particles in the excited states (𝑵𝒆), 𝝐 ≠ 𝟎 called normal phase and the 

other made up of 𝑵𝟎 number particles in the ground state called condensed phase.   

5.1 Conditions for Onset of Bose-Einstein Condensation 

It is now obvious that for Bose-Einstein Condensation to take place the condition can be 

expressed as 

 

𝑵 > 𝑵𝒆 = 𝑽𝑻
𝟑

𝟐
(𝟐 𝝅𝒎 𝒌𝑩)

𝟑

𝟐

 𝒉𝟑
 𝜻 (

𝟑

𝟐
) 

(38) 

It can be expressed alternatively, if we keep 𝑵 and 𝑽 fixed as  

 

𝑻 < 𝑻𝒄 =
 𝒉𝟐

𝟐𝝅𝒎𝒌𝑩
(

𝑵

𝑽𝜻 (
𝟑

𝟐
)
)

𝟐

𝟑

=
𝟐𝝅

(𝜻 (
𝟑

𝟐
))

𝟐

𝟑

ℏ𝟐𝒏
𝟐

𝟑

𝒎𝒌𝑩
= 𝟑. 𝟑𝟏 

ℏ𝟐𝒏
𝟐

𝟑

𝒎𝒌𝑩
  

(39) 

Where 𝑻𝒄 is the transition temperature, which depends on particle density of the system  

and mass of the particles constituting the system. Fraction of  particles in the normal 

phase 
𝑵𝒆

𝑵
 and fraction of particles in the condensed phase can be written respectively as   

 
𝑵𝒆

𝑵
= (

𝑻

𝑻𝑪
)

𝟑

𝟐

 

(40) 

And 

 
𝑵𝟎

𝑵
=

𝑵 − 𝑵𝒆

𝑵
= 𝟏 − (

𝑻

𝑻𝑪
)

𝟑

𝟐

 

(41) 
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Figure 1  shows the plot of fraction of normal phase and fraction of condensed phase 

plotted against 
𝑻

𝑻𝒄
.  It is observed that for 𝑻 > 𝑻𝒄 there is no condensed phase as 

𝑵𝟎

𝑵
→ 𝟎. 

5.2 Visualizing Bose-Einstein Condensation in Momentum Space  

Equation (16) for number density has been written in energy representation, it can also be 

written in momentum space as follows 

 

𝑵 = (
𝒁

𝟏 − 𝒁
) +

𝟒𝝅𝑽

𝒉𝟑
∫  

𝟏

𝒆
𝜷𝒑𝟐

𝟐𝒎 − 𝟏

∞

𝟎

  𝒑𝟐𝒅𝒑 

(42) 

Below the transition temperature, 𝑻𝒄, as 𝑻 → 𝟎, the integral in the second term vanishes 

and the first term gives number of Bosons in the state  𝒑 = 𝟎. So the distribution of the 

particles can be written as 

 𝒅𝑵

𝒅𝒑
=   (

𝒁

𝟏 − 𝒁
)  𝟐𝜹(𝒑) +

𝟒𝝅𝑽

𝒉𝟑
  

𝒑𝟐

𝒆
𝜷𝒑𝟐

𝟐𝒎 − 𝟏

    
(43) 

Noting that 𝟐∫ 𝜹(𝒑)𝒅𝒑
∞

𝟎
= 𝟏. 

Figure 1 Temprature dependence of the boson fractions in condensed 

and in normal phase of an ideal Bose gas 

 
𝑇

𝑇𝐶
 

 
𝑁0

𝑁
 

 
𝑁𝑒

𝑁
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On plotting the particle distribution of bose particles in momentum space fior an ideal 

bose gas below the transition temperature one can visualize the fraction of particles in 

zero momentum space as given in figure 2. 

5.3 Internal Energy  

Recall  from equation (20) that 

  

 
𝑼 =  

𝟑

𝟐
 𝑽𝒌𝑩

𝟏

𝝀𝟑
 𝑻𝒈𝟓

𝟐

(𝒛) 

  

(44) 

And from equation  (17) 

 𝑵 − 𝑵𝟎

𝑽
=  

𝟏

𝝀𝟑
𝒈𝟑

𝟐

(𝒁) 
(45) 

 

or 
𝑵 − 𝑵𝟎 = 𝑵𝒆 = 

𝑽

𝝀𝟑
𝒈𝟑

𝟐

(𝒁) 
(46) 

 

 𝑝 → 

 
𝑑𝑁

𝑑𝑝
↑ 

Figure 2 Momentum distribution of Bose particles in an ideal Bose gas below  𝑻 < 𝑻𝑪 , 

Grey area under the delta function shows the condensate contribution. 
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or 𝑽

𝝀𝟑
=

𝑵𝒆

𝒈𝟑

𝟐

(𝒁)
  

(47) 

Therefore, equation  (44) can be written as 

or 

𝑼 =  
𝟑

𝟐
  𝒌𝑩𝑻𝑵𝒆   

𝒈𝟓

𝟐

(𝒛)

𝒈𝟑

𝟐

(𝒁)
 

 

(48) 

Here the factor 

𝒈𝟓
𝟐

(𝒛)

𝒈𝟑
𝟐

(𝒁)
 gives the deviation of internal energy from the corresponding 

classical value. Noting from equation (40) that  
𝑵𝒆

𝑵
= (

𝑻

𝑻𝑪
)

𝟑

𝟐
, (48) can be written as 

or 

𝑼 =
𝟑

𝟐
  𝑵𝒌𝑩𝑻

𝑵𝒆

𝑵
  

𝒈𝟓

𝟐

(𝒛)

𝒈𝟑

𝟐

(𝒁)
=  

𝟑

𝟐
  𝑵𝒌𝑩𝑻(

𝑻

𝑻𝑪
)

𝟑

𝟐

  

𝒈𝟓

𝟐

(𝒛)

𝒈𝟑

𝟐

(𝒁)
= (

𝟑

𝟐
 𝑵𝒌𝑩𝑻𝒄) (

𝑻

𝑻𝑪
)

𝟓

𝟐

 

𝒈𝟓

𝟐

(𝒛)

𝒈𝟑

𝟐

(𝒁)
 

 

(49) 

For < 𝑻𝑪 , the fugacity Z=1. Equation (49) can be written as  

or 

𝑼 = (
𝟑

𝟐
 𝑵𝒌𝑩𝑻𝒄) (

𝑻

𝑻𝑪
)

𝟓

𝟐

 

𝒈𝟓

𝟐

(𝟏)

𝒈𝟑

𝟐

(𝟏)
= (

𝟑

𝟐
 𝑵𝒌𝑩𝑻𝒄) (

𝑻

𝑻𝑪
)

𝟓

𝟐

 

𝜻𝟓

𝟐

𝜻𝟑

𝟐

 

(50) 

Using the value of Riemann-Zeta function  from appendix, we can write  

or 

𝑼 =  (
𝟑

𝟐
 𝑵𝒌𝑩𝑻𝒄) (

𝑻

𝑻𝑪
)

𝟓

𝟐

 
𝟏. 𝟑𝟒𝟏

𝟐. 𝟔𝟏𝟐
= (

𝟑

𝟐
 𝑵𝒌𝑩𝑻𝒄) (

𝑻

𝑻𝑪
)

𝟓

𝟐

 𝟎. 𝟓𝟏 = 𝟎. 𝟕𝟔 ( 𝑵𝒌𝑩𝑻𝒄) (
𝑻

𝑻𝑪
)

𝟓

𝟐

 

(51) 

In this region  internal energy 𝑼 ∝ 𝑻
𝟓

𝟐. At 𝑻 = 𝑻𝒄 the energy is approximately half that of 

an ordinary gas at the same temperature. 

For > 𝑻𝒄 , 𝒁 < 𝟏 and all particles are in excited states i.e. 𝑵 = 𝑵𝒆 

or 

𝑼 =   
𝟑

𝟐
  𝑵𝒌𝑩𝑻  

𝒈𝟓

𝟐

(𝒛)

𝒈𝟑

𝟐

(𝒁)
 

 

(52) 
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For  𝒁 < 𝟏, 

𝒈𝟓
𝟐

(𝒛)

𝒈𝟑
𝟐

(𝒁)
< 𝟏 and, therefore, in this region internal energy is always less than the 

classical value of  𝟑
𝟐
  𝑵𝒌𝑩𝑻. 

5.4 Specific Heat at Constant Volume of Bose Einstein Condensate 

Specific heat at constant volume is given  by  

 
𝑪𝑽 = (

𝝏𝑼

𝝏𝑻
)
𝑽
 

 

(53) 

For < 𝑻𝒄 , it gives using (51) 

 or 

𝑪𝑽 = (
𝝏𝑼

𝝏𝑻
)
𝑽

=
𝟓

𝟐
( 𝟎. 𝟕𝟔)( 𝑵𝒌𝑩 ) (

𝑻

𝑻𝑪
)

𝟑

𝟐

= 𝟏. 𝟗 𝑵𝒌𝑩 (
𝑻

𝑻𝑪
)

𝟑

𝟐

 

(54) 

 

(55) 

Therefore, 𝑪𝑽 ∝ 𝑻
𝟑

𝟐. 

At = 𝑻𝒄 , we have 

or  𝑪𝑽 = 𝟏. 𝟗 𝑵𝒌𝑩  (56) 

This value is much higher than the classical value of 
𝟑

𝟐
𝑵𝒌𝑩. 

At 𝑻 > 𝑻𝑪, differentiating (52) we get 

or 

𝑪𝑽 = =   
𝟑

𝟐
  𝑵𝒌𝑩

𝝏

𝝏𝑻
( 𝑻  

𝒈𝟓

𝟐

(𝒛)

𝒈𝟑

𝟐

(𝒁)
) 

(57) 

This differentiation requires knowledge of  temperature derivative of 𝒁  

From (47) it is clear that 𝒈𝟑

𝟐

(𝒁) ∝ 𝑻−
𝟑

𝟐 

Therefore,  

  𝝏𝒈𝟑

𝟐

(𝒁)

𝝏𝑻
= −

𝟑

𝟐𝑻
 𝒈𝟑

𝟐

(𝒁) 

(58) 

And recalling the recurrence relation  𝒛
𝝏𝒈𝝂(𝒛)

𝝏𝒛
= 𝒈𝝂−𝟏(𝒛),  
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𝒛
𝝏𝒈𝟑

𝟐

(𝒛)

𝝏𝒛
= 𝒈𝟏

𝟐

(𝒛) 

(59) 

Using (58) and (59) we get 

 𝟏

𝒁
(
𝝏𝒁

𝝏𝑻
)
𝑽,𝑵

= −
𝟑

𝟐𝑻

𝒈𝟑

𝟐

(𝒁)

𝒈𝟏
𝟐

(𝒛)
 

(60) 

Carrying out temperature derivative in equation  (57), we have 

 

𝑪𝑽 = =   
𝟑

𝟐
  𝑵𝒌𝑩 (   

𝒈𝟓

𝟐

(𝒛)

𝒈𝟑

𝟐

(𝒁)
+  𝑻 (

 𝒈𝟑

𝟐

(𝒁)𝒈′
𝟓

𝟐

(𝒛) − 𝒈𝟓

𝟐

(𝒛)𝒈′
𝟑

𝟐

(𝒁)

𝒈𝟑

𝟐

𝟐(𝒁)
)

𝝏

𝝏𝑻
( 𝒁)) 

 

(61) 

Or 

𝑪𝑽 = =   
𝟑

𝟐
  𝑵𝒌𝑩 (   

𝒈𝟓

𝟐

(𝒛)

𝒈𝟑

𝟐

(𝒁)
+  𝑻(

𝒈𝟑

𝟐

(𝒁)𝒈𝟑

𝟐

(𝒛) − 𝒈𝟓

𝟐

(𝒛)𝒈𝟏

𝟐

(𝒁)

𝒈𝟑

𝟐

𝟐(𝒁)
)𝒁

𝝏

𝝏𝑻
( 𝒁)) 

(62) 

 

Or 

𝑪𝑽 = =   
𝟑

𝟐
  𝑵𝒌𝑩 (   

𝒈𝟓

𝟐

(𝒛)

𝒈𝟑

𝟐

(𝒁)
+  𝑻(

𝒈𝟑

𝟐

(𝒁)𝒈𝟑

𝟐

(𝒛) − 𝒈𝟓

𝟐

(𝒛)𝒈𝟏

𝟐

(𝒁)

𝒈𝟑

𝟐

𝟐(𝒁)
))(−

𝟑

𝟐𝑻

𝒈𝟑

𝟐

(𝒁)

𝒈𝟏
𝟐

(𝒛)
) 

(63) 

 

Or 

𝑪𝑽 = =   
𝟑

𝟐
  𝑵𝒌𝑩 (   

𝒈𝟓

𝟐

(𝒛)

𝒈𝟑

𝟐

(𝒁)
−

𝟑

𝟐
(

𝒈𝟑

𝟐

(𝒁)

𝒈𝟏
𝟐

(𝒛)
−

𝒈𝟓

𝟐

 (𝒁)

𝒈𝟑

𝟐

 (𝒁)
))  

(64) 

 

Or 

𝑪𝑽 =    𝑵𝒌𝑩 ( 
𝟏𝟓

𝟒
 

𝒈𝟓

𝟐

(𝒛)

𝒈𝟑

𝟐

(𝒁)
−

𝟗

𝟒
(

𝒈𝟑

𝟐

(𝒁)

𝒈𝟏
𝟐

(𝒛)
 ))  

(65) 

Here we note that term in the parentheses on the right hand side decreases till in the limit 

→ 𝟎 , 

Or 
𝑪𝑽 =    𝑵𝒌𝑩 ( 

𝟏𝟓

𝟒
  −

𝟗

𝟒
 ) =

𝟑

𝟐
𝑵𝒌𝑩  

(66) 
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For 𝑻 = 𝑻𝑪, i.e. in the limit 𝒁 → 𝟏, 𝒈𝟏

𝟐

(𝒛) diverges and the second term vanishes and the 

contribution comes only from first term  which is  

Or 

𝑪𝑽 =    𝑵𝒌𝑩 ( 
𝟏𝟓

𝟒
 

𝒈𝟓

𝟐

(𝟏)

𝒈𝟑

𝟐

(𝟏)
) = 𝑵𝒌𝑩 ( 

𝟏𝟓

𝟒
 
𝜻 (

𝟓

𝟐
)

𝜻 (
𝟑

𝟐
)
) = 𝟏. 𝟗𝟐𝟓 𝑵𝒌𝑩 

(67) 

It is the same result as given by (56). 

 

Figure 3 Specific heat vs 
𝑻

𝑻𝒄
  of an ideal Bose gas 

Figure 3 gives a plot of specific heat of an ideal Bose gas  against reduced temperature 
𝑻

𝑻𝒄
. 

It is a continuous curve at 𝑻 = 𝑻𝒄, however, its slope is discontinuous. Furthermore, 

since below 𝑻𝒄 and above 𝑻𝒄 the properties of the ideal Bose gas are different, it may be 

concluded that there is a phase transition. There is a real system corresponding to 𝑯𝒆𝟒, a 

bosonic system, to which the results of specific heat resemble, though that system is far 

from an ideal Bose gas behavior.  The transition point there is called lambda transition, 

since the specific heat curve of this 𝑯𝒆𝟒bosonic system resembles the greek letter 𝝀. 

5.5 Pressure   

From equation (20), we know  

 
𝑷 𝑽 =

𝟐

𝟑
𝑼 =   𝑽

𝒌𝑩𝑻

𝝀𝟑
 𝒈𝟓

𝟐

(𝒛)   
(68) 

For < 𝑻𝒄 , 𝒛 = 𝟏, 𝒈𝟓

𝟐

(𝒛) = 1.341and, therefore, 

 
𝐶𝑉

𝑁𝑘𝐵
 ↑ 

 

 
𝑇

𝑇𝐶
  → 
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𝑷  =  𝟏. 𝟑𝟒𝟏 
𝒌𝑩𝑻

𝝀𝟑
=  𝟏. 𝟑𝟒𝟏 

𝒌𝑩𝑻

𝝀𝟑
=  𝟏. 𝟑𝟒𝟏𝒌𝑩𝑻

(𝟐 𝝅𝒎 𝒌𝑩𝑻)
𝟑

𝟐 

𝒉𝟑
 

(69) 

In this region we see that pressure is independent of 𝑽, implying  and P is ∝ 𝑻
𝟓

𝟐. 

 

Figure 4 PT diagram of the ideal Bose gas. 𝑷𝑻
𝟓

𝟐 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕. Condensed phase lies on the line and below it is the 

normal gas phase 

At 𝑻 = 𝑻𝒄,  

 

𝑷  =  𝟏. 𝟑𝟒𝟏
(𝟐 𝝅𝒎 )

𝟑

𝟐 

𝒉𝟑
 (𝒌𝑩𝑻𝑪)

𝟓

𝟐 

(70) 

Using (39), 𝒌𝑩𝑻𝒄 =
 𝒉𝟐

𝟐𝝅𝒎
(

𝑵

𝑽𝜻(
𝟑

𝟐
)
)

𝟐

𝟑

in (69), we get 

 
𝑷  =

𝟏. 𝟑𝟒𝟏

𝜻 (
𝟑

𝟐
)

   
𝑵

𝑽
 𝒌𝑩𝑻𝑪 = 

𝟏. 𝟑𝟒𝟏

𝟐. 𝟔𝟏𝟐
   

𝑵

𝑽
 𝒌𝑩𝑻𝑪 = 𝟎. 𝟓𝟏𝟑𝟑  

𝑵

𝑽
 𝒌𝑩𝑻𝑪 

(71) 

 

 𝑷𝑽

𝑵𝒌𝑩

𝟏

𝑻𝑪
    =  𝟎. 𝟓𝟏𝟑𝟑 

(72) 

 

It shows that temperature exerted by an ideal Bose gas at 𝑻 = 𝑻𝒄 is half the pressure 

exerted by a classical ideal gas. 
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For > 𝑻𝒄 ,    

 

𝑷  =   
𝒌𝑩𝑻

𝝀𝟑
 𝒈𝟓

𝟐

(𝒛) =
𝒌𝑩𝑻

𝑽

𝑵

𝒈𝟓

𝟐

(𝒛)

𝒈𝟑

𝟐

(𝒛)
  

(73) 

  

or 

 𝑷 =
𝑵𝒌𝑩𝑻

𝑽

𝒈𝟓

𝟐

(𝒛)

𝒈𝟑

𝟐

(𝒛)
  

(74) 

Since The ratio of the two functions is always less than unity, pressure is once again less 

than the classical ideal gas. As 𝑻 → ∞, 𝒁 → 𝟎 and pressure asymptotically approaches 

classical value. 

5.6  Entropy 

For 𝑻 ≤ 𝑻𝒄, using (55) the expression for 𝑪𝑽, we can calculate entropy by integrating 

 

 𝑺 = ∫
𝑪𝑽

𝑻
 𝒅𝑻

𝑻

𝟎

=
𝟐

𝟑
𝟏. 𝟗𝒌𝑩𝑵(

𝑻

𝑻𝒄
)

𝟑

𝟐

= 𝟏. 𝟐𝟖 𝒌𝑩𝑵𝒆  

(75) 

Where we have used 𝑵𝒆 = 𝑵(
𝑻

𝑻𝒄
)

𝟑

𝟐
. In this region normal phase and condensed phase 

both are present but it is the particles 𝑵𝒆 in the normal phase which contribute to the 

entropy of the system. Contribution to Entropy by  the particles 𝑵𝟎 in condensed phase is 

zero. At 𝟎𝒐𝑲 all particles are in ground state and the entropy of the system 𝑺 = 𝟎. 

Also recalling the thermo-dynamical relation  

 𝑮 = 𝑼 − 𝑻𝑺 + 𝑷𝑽 = 𝝁𝑵  (76) 

 

 𝑺

𝒌𝑩𝑵
=

𝑼 + 𝑷𝑽

𝒌𝑩𝑻𝑵
−

𝝁

𝒌𝑩𝑻
  

(77) 

And noting that for 𝑻 < 𝑻𝑪, 𝝁 = 𝟎,  

Therefore, 
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𝑺

𝒌𝑩𝑵
=

𝑼 + 𝑷𝑽

𝒌𝑩𝑻𝑵
=

𝟓

𝟑

𝑼

𝒌𝑩𝑻𝑵
 =

𝟓

𝟐

𝑷𝑽

𝒌𝑩𝑻𝑵
=

𝟓

𝟐

𝑽

𝑵 𝝀𝟑
𝜻 (

𝟓

𝟐
) =

𝟓

𝟐

𝜻 (
𝟓

𝟐
)

𝜻 (
𝟑

𝟐
)
 

(78) 

Since 𝑵 = 𝑵𝒆 

 

𝑺 =  𝒌𝑩𝑵𝒆

𝟓

𝟐

𝜻 (
𝟓

𝟐
)

𝜻 (
𝟑

𝟐
)
 

(79) 

Or 𝑺 ∝ 𝑵𝒆. 

For 𝑻 > 𝑻𝑪,  

 𝑺

𝒌𝑩𝑵
=

𝑼 + 𝑷𝑽

𝒌𝑩𝑻𝑵
−

𝝁

𝒌𝑩𝑻
=

𝟓

𝟐

𝑷𝑽

𝒌𝑩𝑻𝑵
− 𝐥𝐧(𝒁) =

𝟓

𝟐

𝒈𝟓

𝟐

(𝒁)

𝒈𝟑

𝟐

(𝒁)
− 𝐥𝐧(𝒁) 

(80) 

5.7  Isotherms for an Ideal  Bose Gas 

We now consider isotherms  of an ideal Bose gas. According to equation (28), at constant 

temperature pressure 𝑷 varies as (
𝟏

𝑽
+ 𝑶(𝑽𝟐)) for 𝑽 > 𝑽𝑪, while for 𝑽 < 𝑽𝑪(𝑻) it is 

independent of  𝑽. The isotherms are plotted in figure 5 below. 

 

Figure 5 Isotherms for an ideal Bose gas in a 𝑷 − 𝑽 diagram. Dashed line(𝑷 ∝
𝟏

𝑽
𝟓
𝟑

)   is the 

transition line, region to the left of this line is condensation region.  
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𝑽𝑪𝟏 and 𝑽𝑪𝟐 are the volumes where the isotherms for 𝑻𝟏 and 𝑻𝟐 touch the transition line.  

For 𝑽 < 𝑽𝒄, pressure remains constant, where as for 𝑽 > 𝑽𝒄, as volume decreases 

pressure increase till the isotherm touches the transition line. The region below transition 

line is a co-existence region, having both the condensed phase and the normal phase. As 

the volume decrease the number of particles in the condensed phase increases. It can also 

be seen from the isotherms that pressure in the co-existence region is determined by the 

temperature alone. For 𝑻𝟐 > 𝑻𝟏, 𝑷𝟐 > 𝑷𝟏. Also in the coexistence region, since pressure 

is solely dependent on temperature. It corresponds to first order phase transition. 

 5.8 Adiabatic Relations of Ideal Bose Gas 

For a reversible adiabatic process, entropy is constant. Therefore, form (75) for < 𝑻𝑪 𝑺 =

 𝟏. 𝟐𝟖 𝒌𝑩𝑵𝒆, 𝑵𝒆 is constant.  From (47) 
𝑽

𝝀𝟑 =
𝑵𝒆

𝒈𝟑
𝟐

(𝒁)
, we have,  

  𝑽

𝝀𝟑
=

𝑵𝒆

𝜻𝟑

𝟐

(𝟏)
= 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 

(81) 

Hence 

 𝑽

𝑻
−

𝟑
𝟐

= 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕   (82) 

On the Other hand for 𝑻 > 𝑻𝑪, from equation (80) it follows that fugacity 𝒛 and  𝒈𝟓

𝟐

(𝒁) 

are both constant. Hence  from equation (73)  

 𝑷

𝑻
𝟓

𝟐

  =   𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕  
(83) 

Eliminating, 𝑻 from (82) and (83) we get adiabatic equation of ideal Bose gas. 

 
 𝑷𝑽

𝟓

𝟑   =   𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕  
(84) 

6 Bose Einstein Condensation: Experimental Realisation 

In the study of Ideal Bose gas model, it is natural to look for its manifestation in nature in 

the form of Bose Einstein Condensation. The real challenge in observing this lies in 

getting a gas of non-interacting bosons. This requires average particle- particle distance 

(𝒓𝒅) of the boson gas to be greater than the range of particle-particle interaction (𝒓𝒊) . 

Typical range of particle –particle interaction is of the order of s-wave scattering length 

(𝒂𝒔). Also the thermal de-Broglie wave length (𝝀) should be much greater than the 

particle- particle distance (𝒓𝒅). So when we are able to satisfy the criteria 𝝀 ≫ 𝒓𝒅 ≫
𝒓𝒊~𝒂𝒔 we can treat the bosonic system as an ideal Bose gas. 

Its first signatures were thought to be not in the so called non-interacting gas but in a 

quantum liquid in the form of   liquid Helium-4 which is a collection of bosons and has 
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an extraordinary property of superfluidity which was to begin with thought to be 

attributed to Bose Einstein Condensation. 

It was only lately,  in 1995,  that Bose Einstein Condensation was demonstrated in the 

dilute gas of Rubidium -87 atoms when its  vapours were cooled below 170𝒏𝑲. We will 

look at these two experimental realisations of Bose Einstein Condensations in the 

Following 

6.1 Liquid 𝟒𝑯𝒆 

Helium is a very interesting element, which has two isotopes 𝟒𝑯𝒆 and 𝟑𝑯𝒆. 𝟒𝑯𝒆 is most 

abundant and  𝟑𝑯𝒆 the least abundant. Helium was found to be a liquid form only at 

extremely low temperature at 4 K downwards. 𝟒𝑯𝒆 atoms are having even number of spin 
𝟏

𝟐
 particles are bosons and 𝟑𝑯𝒆 atoms having odd number of particles are fermions. 

Liquid 𝟒𝑯𝒆 has an interesting phase transition called 𝝀 transition from phase called He I 

to a phase called Helium II as shown in figure 6. The later phase is a superfluid phase. 

This transition takes place at 𝑻𝝀=2.18 K.  

 

 
  Figure 6 Phase diagram of 𝟒𝑯𝒆 
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Figure 7 Specific Heat for Superfield Helium II 

Interestingly, if we take the mass of 𝟒𝑯𝒆 atom to be 𝒎 =  𝟔. 𝟔𝟓 × 𝟏𝟎−𝟒 g and use the 

formula for calculating the transition temperature with specific volume 𝒗𝝀, and 

𝒈𝟑

𝟐

(1)=2.612 one gets 𝑻𝒄=3.12. This number is very close to 𝑻𝝀. But if we look at the 

experimental  𝑪𝑽 − 𝑻 curve for 𝟒𝑯𝒆, figure 7, it has a logarithmic divergence and is a 

departure from finite 𝑪𝑽 at 𝑻𝒄 in an ideal Bose gas.  And, therefore, this transition need to 

be looked into by including rather strong interaction among the 𝟒𝑯𝒆 atoms. This has been 

a question which was pondered over  by Landau and Feynman particularly in the context 

of superfluidity shown by 𝟒𝑯𝒆. We will look at thus system in more details in the next 

module. 

6.2 Ultra-Cold Atomic Gases 

Bose Einstein Condensate in Ultra Cold atomic gases of 𝑹𝒃𝟖𝟕  isotope by Carl 

Wiemann’s group in colorado was the first demonstrations of a pure Bose Einstein 

condensate in Matter in 1995. In quick succession Ketterle’s group in MIT 

Massachusetts demonstrated Bose Einstein Condensate of 𝑵𝒂𝟐𝟑 .  This was made 

possible by convergence of many innovative  technologies to magnetically trap a group 

of thousands of atoms first cooled by counter propagating laser beams and further cooled 

by evaporative cooling.  Magnetic trapping made sure that a desirable number of Bosons 

are available in a specific volume. 

Alkali atoms chosen for this purpose have valence one leading to half integer spin, 
𝟏

𝟐
 ℏ, 

But for Bose Einstein condensation one needs integral spin. Since nuclear spin of alkali 

atoms ( 𝑹𝒃𝟖𝟕 , 𝑵𝒂𝟐𝟑 , 𝑳𝒊)𝟕 is also half integer spin, 
𝟑

𝟐
ℏ, so the first requirement which 

needs to be fulfilled is the coupling of  the electronic spin of the electrons with the 

nuclear spin. This requires total spin 𝑱 = 𝑰 + 𝑺⃗⃗ , in the range of |𝑰 + 𝑺| and |𝑰 − 𝑺|, 

where 𝑰  and 𝑺⃗⃗  are respectively nuclear and electronic spins of the atoms. Therefore, total 

spin of the alkali atoms is either 𝟐ℏ or 𝟏ℏ. This also requires that isotopes of the alkali 

atoms chosen should be such that both atomic number and mass number should be odd. 

So that 𝒁 + 𝑨 is even and atom as a whole has even number of fermions so that total 𝑱  is  

integer and hence a Boson. 
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It is worth estimating 𝑻𝑪 for say 𝑹𝒃𝟖𝟕  using formula 𝑻𝒄 = 𝟑. 𝟑𝟏 
ℏ𝟐𝒏

𝟐
𝟑

𝒎𝒌𝑩
. 𝑹𝒃𝟖𝟕  has a 

typical value of density of the order of n~𝟏𝟎𝟏𝟖𝒎−𝟑. Using 𝒎 = (𝟑𝟕𝒎𝒑 + 𝟓𝟎 𝒎𝒏 +

𝟑𝟕 𝒎𝒆) one gets 𝑻𝒄~𝟏𝟖. 𝟐𝟖 𝒏𝑲 ~ 𝟏𝟎−𝟕𝑲.  Furthermore, hyperfine interaction energy 

for Rb is about 0.3 K, meaning thereby that below about 0.1 K, coupling between 

nuclear spin and electronic spin survives. Thus at a temperature at about 𝟏𝟎−𝟕𝑲 or 

below, Bose Einstein Condensation will happen in 87Rb can be experimentally observed.  

Steps to experimentally produce Bose Einstein Condensate: 

(a) First pure bosons in the form of particular isotopes of say 87Rb are taken and put in 

vacuum. 

(b) The atoms so taken are cooled to fractions of a 0K. 

(c) Then these cooled atoms are put in a magnetic trap which is pair of co-axial anti 

Helmholtz coils with current flowing in opposite direction leading to a quadrupole 

field, such that in the central region of two coils magnetic field is zero. This region 

acts as a trap forming a plus like configuration with opposite points having same 

magnetic polarity. 

(d) A laser with a precisely calculated wavelength tuned slightly below the resonant 

frequency of the atoms in the trap is beamed on the atoms. Atoms which are 

stationary are off the resonance and do not absorb an incident photon. On the other 

hand moving atoms are Doppler shifted on resonance to the laser beam which is 

moving in a direction opposite to the velocity vector of the atom. These atoms 

absorb photons from that direction and then reemits in the random directions, 

causing a net momentum impulse in a direction opposite to the direction of 

motion. This results in slowing down of the atoms and hence in lowering the 

temperature. In fact the experimental set up uses three sets of counter propagating 

beams oriented along Cartesian axis. This step has limit to cooling because of 

recoil limit when the atoms acquire a minimum momentum of the order of 

momentum of the photons of the laser beam. This step cools the atoms to a 

temperature of the order of 10−6K. The real challenge in this step is to keep the 

laser tuned to desirable frequency. 

(e) Further cooling is caused by evaporative cooling, which essentially allows atoms 

moving faster to escape from the trap leaving the lowest energy atoms behind. A 

stage comes when the only atoms left behind are the ground state atoms and they 

coalesce into a Bose Einstein condensate, which behaves like a single superatom. 

Rubidium atoms because of highest mass could go into the ground state at the 

highest temperature. 

(f) The next step was to detect the Bose Einstein Condensate. This is achieved by 

suddenly switching off the trapping forces, allowing the super atom to expand. 

Colder the atoms slower is the expansion of the super atom.Using a resonant laser 

light an image of this expansion can be captured. The famous picture shown in 

figure 8 captures the first Bose Einstein Condensate. 
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Figure 8 Sequence of Bose Einstein Condensation in Rubidium 87. Picture shows atomic distribution before BEC, at 

the start start of BEC and after full BEC.  

(Source:https://upload.wikimedia.org/wikipedia/commons/thumb/a/af/Bose_Einstein_condensate.png/238px-

Bose_Einstein_condensate.png) 

 

5. Summary 

In this module we have learnt  

 about broad learning goals of this e-course in statistical mechanics and what are the pre-

requisites for appreciating it. 

 that despite the laws governing the constituent particles are well known, yet coming 

together of a large number of particles makes the understanding of such a system possible 

only by statistical means, revealing new laws unheard of in the realm of individual 

particle behavior. 

 that new laws are probabilistic in nature and give an average behavior of the properties of 

the system. 

 that how statistical approach relates to thermo-dynamical physical quantities via 

boltzmann’s famous relation for entropy and thus opens a pathway to link statistical 

mechanics with thermodynamics(a very well established phenomenological theory)? 

 that statistical mechanics deals with a many particle system with a challenge of handling 

complexity of them all together, usually with very meager information available at any 

point of time. 

 that the long list of its applications provide a wide sweep and utility  of statistical 

mechanics not only in understanding physical phenomenon, but also phenomenon 

encountered in variety of diverse fields in biology, economics, ecology, information 

theory and   computer science. 
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Appendix 

 A1 Bose Integrals 

The integrals of the following type encountered in this module are called Bose integrals 

𝒈𝝂(𝒛) =
𝟏

𝚪(𝝂)
 ∫

𝒙 𝝂−𝟏

(𝒁−𝟏𝒆𝒙 − 𝟏)
𝒅𝒙

∞

𝟎

   

It has following interesting properties: 

(a) For small 𝒁, the factor  
𝟏

(𝒁−𝟏𝒆𝒙−𝟏)
  in the integrand can be written as 

 
𝒁𝒆−𝒙(𝟏 − 𝒁𝒆−𝒙)

−𝟏
 and can be expanded as given below 

 𝒁𝒆−𝒙(𝟏 − 𝒁𝒆−𝒙)−𝟏 = 𝒁𝒆−𝒙(𝟏 + (−𝟏)(−𝒁𝒆−𝒙) +
(−𝟏)(−𝟐)

𝟐!
(−𝒁𝒆−𝒙)𝟐 +

(−𝟏)(−𝟐)(−𝟑)

𝟑!
(−𝒁𝒆−𝒙)𝟑 + ⋯

= (𝒁𝒆−𝒙 + (𝒁𝒆−𝒙)𝟐 + (𝒁𝒆−𝒙)𝟑 + (𝒁𝒆−𝒙)𝟒 + ⋯ = ∑(−𝟏)𝒍−𝟏

∞

𝒍=𝟏

(𝒁𝒆−𝒙)𝒍 

𝒈𝝂(𝒛) =  
𝟏

𝚪(𝝂)
 ∫ 𝒙 𝝂−𝟏  ∑(𝒁𝒆−𝒙)𝒍

∞

𝒍=𝟏

 𝒅𝒙

∞

𝟎

 

Let us now look at the lth term of the integral 

 𝒁𝒍 ∫ 𝒙 𝝂−𝟏𝒆−𝒍𝒙   𝒅𝒙

∞

𝟎

 

Put 𝒍𝒙 = 𝒚 in the above integral, we get 𝒅𝒙 =
𝒅𝒚

𝒍
 and it takes the form 

 
𝒁𝒍

𝒍𝝂
∫(𝒚) 𝝂−𝟏 𝒆−𝒚  𝒅𝒚

∞

𝟎

= 
𝒁𝒍

𝒍𝝂
 𝚪(𝝂) 
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Therefore,  

𝒈𝝂(𝒛) =   ∑  

∞

𝒍=𝟏

 
𝒁𝒍

𝒍𝝂
= 𝒛 +

𝒛𝟐

𝟐𝝂
 +

𝒛𝟑

𝟑𝝂
+ ⋯ 

(b)  The integral 𝒈𝝂(𝒛) satisfies the following recurrence relation which can be easily 

verified from the series   given above 

𝒛
𝝏𝒈𝝂(𝒛)

𝝏𝒛
= 𝒈𝝂−𝟏(𝒛) 

(c) For 𝑍 ≪ 1, the  function 𝑔𝜈(𝑧) behaves as 𝑍. Also 𝑔𝜈(𝑧) is a monotonically 

increasing function of 𝑧. Since largest value of 𝑧 which is of physical interest is 1, 

then for 𝜈 > 1, 𝑔𝜈(𝑧)   approaches the Riemann-Zeta function 𝜁(𝜈)  

𝑔𝜈(1) =  ∑  ∞
𝑙=1  

𝟏

𝑙𝜈
= 𝜁(𝜈)  for 𝜈 > 1 

Table of Riemmann-Zeta functions 𝜁(𝜈) for various values of 𝜈 >1 

𝜈 𝜁(𝜈)  

 
Calculated 

analytically 

Calculated numerically, rounded to 

three decimal places 
3

2
  2.612 

2 
𝜋2

6
 1.645 

5

2
  1.341 

3  1.202 

4 
𝜋4

90
 1.082 

 

 

 

 

 


